Cellulose is synthesized by cellulose synthases (CESAs) in plasma membrane-localized complexes, which act as a central component of the cell wall and influence plant growth and defense responses. Puccinia striiformis f. sp. tritici (Pst) is an airborne fungus that causes stripe rust to seriously endanger wheat production. In this study, a CESA gene, TaCESA7, was identified to be significantly up-regulated during Pst infection in wheat (Triticum aestivum L.). TaCESA7 was localized on the plasma membrane in dimeric form, and the dimers interact to assemble into CESA complexes. Stable overexpression of TaCESA7 weakened the resistance of wheat to Pst. Knockdown of TaCESA7 by RNA interference (RNAi) and virus-induced gene silencing led to restricted hyphal spread, increased necrotic area, and simultaneously promotes reactive oxygen species (ROS) accumulation and the expression of pathogenesis-related (PR) genes. Transcriptome analysis of TaCESA7-RNAi plants revealed that the up-regulated genes were significantly enriched in the phenylpropanoid biosynthesis and plant-pathogen interaction pathways. Moreover, silencing TaCESA7 promoted the deposition of lignin and the expression of genes related to lignin synthesis. CRISPR-Cas9-mediated inactivation of TaCESA7 in wheat could confer broad-spectrum resistance against Pst without affecting agronomic traits. These findings provide valuable candidate gene resources and guidance for molecular breeding to improve the resistance of wheat to fungal disease.
Cellulose synthase TaCESA7 negatively regulates wheat resistance to stripe rust by reducing cell wall lignification.
纤维素合成酶 TaCESA7 通过降低细胞壁木质化作用,对小麦条锈病的抗性产生负调控作用
阅读:6
作者:Zhang Yanqin, Yu Longhui, Guo Shuangyuan, Huang Xueling, Chen Yihan, Gan Pengfei, Lin Yi, Wang Xiaojie, Kang Zhensheng, Zhang Xinmei
| 期刊: | Stress Biology | 影响因子: | 5.800 |
| 时间: | 2025 | 起止号: | 2025 Jun 16; 5(1):42 |
| doi: | 10.1007/s44154-025-00244-7 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
