Recombinant human collagen type III microgel: an advanced injectable dermal filler for rejuvenating aging skin.

重组人胶原蛋白III型微凝胶:一种先进的注射式真皮填充剂,用于使衰老皮肤恢复活力

阅读:5
作者:Chen Yafang, Zhao Yihan, Zhang Xinyue, Sun Yang, Li Kang, Zhang Liguo, Li Shuang, Liang Jie, Wang Kefeng, Fan Yujiang
Skin aging, characterized by reduced collagen regeneration, chronic inflammation and heightened skin cancer risk, poses a significant challenge. Collagen-based materials, employed as dermal fillers to smooth wrinkles, have attained extensive utilization. Nevertheless, traditional animal-derived collagen protein primarily presents concerns pertaining to disease risks, potential immunological reactions, and batch instability. Here, we introduced a highly durable 1,4-butanediol diglycidyl ether cross-linked recombinant human collagen type III (rhCol III) microgel as dermal filler for rejuvenating aging skin. The rhCol III microgel exhibited exceptional thermostability, mechanical strength and injectability. Subsequently, we established a UV-photoaging skin animal model and chose rhCol III microgel as a bioactive material for in vivo implantation, systematically comparing its biological effect with commercialized collagen I (Col I) derived from porcine skin (pCollagen) and hyaluronic acid through histological observation, immunofluorescence staining, hydroxyproline quantification and analysis of specific gene expression. Outcomes indicated rhCol III microgel prompted augmented production of Col I, collagen III (Col III) and elastic fibers, thereby contributing to the remodeling of the extracellular matrix (ECM). In summary, our investigation contributed to robust biosafety and rejuvenation of UV-induced skin photoaging by rhCol III under a single injection for 6 weeks. Despite the imperative ongoing efforts required for the successful translation from bench to clinic, the discernibly superior safety and efficacy of rhCol III microgel present an innovative methodology in combating skin aging, offering significant promise in medical cosmetology and tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。