BACKGROUND: Root exudates serve as chemical signaling molecules that regulate rhizosphere interactions and control soil-borne diseases. The interactions between plants and the soil microbiome play dynamic and crucial roles in regulating the resistance of plants to biotic stress. However, the specific roles of many root exudates in plant pathogens remain unclear. The root exudate methyl ferulate, a naturally occurring and relatively non-toxic antifungal agent, has been applied to control postharvest pathogens and preserve foodstuffs and has not been used in plant disease control. RESULTS: This study investigated the role of the root exudate methyl ferulate in controlling tobacco black shank disease. We observed that methyl ferulate was secreted in greater quantities in the tobacco resistant cultivar Gexin 3 following inoculation with P. nicotianae than in the susceptible cultivar Xiaohuangjin 1025. Our findings also revealed that methyl ferulate strongly inhibited P. nicotianae (EC(50)â=â67.51 µg/mL), effectively controlling tobacco black shank disease by impairing NADH dehydrogenase function (the activity decreased by 50%). Furthermore, methyl ferulate recruited disease-suppressive rhizosphere microbes, such as Bacillus (the relative abundance of these microbes increases from 4.69% to 13.79%), thereby increasing disease resistance. The overexpression of caffeic acid O-methyltransferase NtCOMT10 resulted in increased methyl ferulate secretion (increased to 221.09% compared with that of the wild-type), concomitant improvement in the disease suppression of tobacco black shank disease (disease index decreased from 20% to less than 10%) and enrichment of beneficial microbes. In addition, methyl ferulate exerted antagonistic effects on other phytopathogens, such as B. cinerea, P. aphanidermatum, P. sojae, C. lagenarium and F. oxysporum. CONCLUSIONS: Our findings indicated that methyl ferulate, a component of root exudates regulated by NtCOMT10, can inhibit phytopathogens and enrich rhizosphere Bacillus against plant disease. The great dual effect of methyl ferulate on the control of phytopathogens and its low cost enable a novel potential avenue for controlling soil-borne fungal diseases. This study provides ingenious insights into controlling soil-borne diseases through beneficial root exudates. Video Abstract.
A tale for two roles: Root-secreted methyl ferulate inhibits P. nicotianae and enriches the rhizosphere Bacillus against black shank disease in tobacco.
故事讲述两个作用:根分泌的阿魏酸甲酯抑制烟草黑胫病菌,并增加根际芽孢杆菌的含量,从而抵抗烟草黑胫病
阅读:4
作者:Ma Siqi, Chen Qianru, Zheng Yanfen, Ren Tingting, He Rui, Cheng Lirui, Zou Ping, Jing Changliang, Zhang Chengsheng, Li Yiqiang
| 期刊: | Microbiome | 影响因子: | 12.700 |
| 时间: | 2025 | 起止号: | 2025 Jan 31; 13(1):33 |
| doi: | 10.1186/s40168-024-02008-3 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
