Global climate change is pushing insects into colder regions. Understanding their cold tolerance is important for predicting population dynamics. During overwintering, Streltzoviella insularis larvae activate the AMPK signaling pathway. This suggests that energy metabolism plays a key role under cold stress. In this study, we used enzyme activity assays, LC-MS-based targeted metabolomics, and transcriptome sequencing. We focused on six key enzymes in glycolysis and the TCA cycle. We also measured related metabolites and regulatory genes. Hexokinase (HK) and citrate synthase (CS) activities were highly sensitive to temperature. HK increased then markedly decreased; CS was significantly downregulated. Pyruvate kinase (PK), isocitrate dehydrogenase (IDH), and α-ketoglutarate dehydrogenase (KGD) showed trends that matched changes in larval cold tolerance, exhibiting an up-down-up expression trend. Glycolytic metabolites (glucose-6-phosphate, fructose-6-phosphate, 1,6-fructose-diphosphate, phosphoenolpyruvic acid) peaked at -10 °C. TCA intermediates (citrate, acetyl-CoA, α-ketoglutaric acid, and isocitrate) were more abundant at 0-4 °C. Pyruvate increased significantly. PYR content showed a significant increase followed by a decrease, peaking at 0 °C. It was converted into lactate and acetyl-CoA. ATP levels dropped and then increased, reaching their lowest level at 0 °C. These results suggest a shift from aerobic to mixed aerobic-anaerobic metabolism. Transcriptome data showed differential expression of key metabolic genes such as phosphoenolpyruvate carboxykinase, phosphoglycerate kinase, and ATP synthase subunit beta. These gene changes supported the trends in enzymes and metabolites. Our findings reveal a coordinated metabolic and transcriptional response to cold. This provides a basis for understanding the cold adaptation and potential range expansion of S. insularis.
Metabolic Remodeling of the Tricarboxylic Acid Cycle and Glycolysis Reveals Cold-Induced Respiratory Adaptations in Streltzoviella insularis (Staudinger) (Lepidoptera: Cossidae) Larvae.
三羧酸循环和糖酵解的代谢重塑揭示了岛屿小蠹(Streltzoviella insularis (Staudinger) (鳞翅目:木蠹科))幼虫的冷诱导呼吸适应
阅读:4
作者:Zhi Lingxu, Li Ruixin, Zhang Baosheng, Zhang Yan, Pei Jiahe, Zong Shixiang
| 期刊: | Insects | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 19; 16(8):864 |
| doi: | 10.3390/insects16080864 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
