Radix astragali is a homologous plant of medicine and food with a variety of health benefits. However, our previous study showed that blue mold, caused by Penicillium polonicum, is the most important postharvest disease of fresh R. astragali during storage. Ozone, as a strong oxidizing agent, can effectively control the occurrence of postharvest diseases in fruits and vegetables. Nevertheless, there are few research studies on the effect of ozone-treated fresh Chinese traditional medicine. In this study, we investigated the effect of ozone gas on the postharvest blue mold development, mycotoxin accumulation, and main active component contents in fresh R. astragali infected by P. polonicum, and analyzed the possible action mechanism on ROS metabolism. The result indicates that ozone application significantly inhibited the development of postharvest blue mold caused by P. polonicum infection, reduced the disease incidence, disease index, and weight loss rate, maintained the main active ingredients in fresh R. astragali by activating ROS metabolism, enhanced the antioxidant enzymatic activity, thus avoiding oxidative damage caused by excessive ROS accumulation, and maintained the integrity of the cell membrane, ultimately controlling the occurrence of blue mold of R. astragali. Moreover, ozone treatment also maintained the contents of the main active ingredients in R. astragali before 14 d during P. polonicum infection. In addition, the amount of active ingredients of astragaloside I, calycosin-7-glucoside, and ononin in the ozone-treated group was higher than that in the control group during the storage period. We speculate that, under the action of ozone, astragaloside IV was converted into astragaloside II by oxidative modification and astragaloside II was further oxidized to astragaloside I, resulting in the accumulation of astragaloside I. Similarity, the hydrogen atoms (-H) on the benzene ring in formononetin were oxidized to phenolic hydroxyl groups (-OH) to generate calycosin, which was further converted into calycosin-7-glucoside, resulting in calycosin-7-glucoside accumulation. This study will provide the theoretical basis for ozone commercial application to control the occurrence of postharvest diseases of R. astragali.
Ozone Treatment Inhibited the Blue Mold Development and Maintained the Main Active Ingredient Content in Radix astragali Infected by Penicillium polonicum Through Activating Reactive Oxygen Species Metabolism.
臭氧处理通过激活活性氧代谢抑制青霉菌的生长,并保持黄芪中主要活性成分的含量
阅读:5
作者:Xi Jihui, Liu Qili, Zhang Qingru, Liu Zhiguang, Xue Huali, Feng Yuqin
| 期刊: | Journal of Fungi | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 May 23; 11(6):402 |
| doi: | 10.3390/jof11060402 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
