StTCTP Positively Regulates StSN2 to Enhance Drought Stress Tolerance in Potato by Scavenging Reactive Oxygen Species.

StTCTP通过清除活性氧来正向调节StSN2,从而增强马铃薯的抗旱性

阅读:4
作者:Liu Shifeng, Zhang Feng, Feng Haojie, Wang Xiyao, Wang Qiang, Lai Xianjun, Yan Lang
Drought is a negative agronomic effect that can lead to an increase in reactive oxygen species (ROS) levels. Excessive drought can severely alter cell membrane fluidity and permeability, significantly reducing cell viability. The Gibberellic acid-stimulated Arabidopsis (Snakin/GASA) gene family has an important role as antioxidants in inhibiting the accumulation of ROS and improving crop drought resistance. However, the regulatory mechanism of potato StSnakin-2 (StSN2) in response to drought, along with how StSN2 expression is regulated, is not well understood. In this study, we found that StSN2 was induced by drought. Overexpression of StSN2 significantly increased drought tolerance, whereas silencing StSN2 increased sensitivity to drought. Overexpression of StSN2 resulted in higher antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) activity, and lowered hydrogen peroxide (H(2)O(2)) and malondialdehyde (MDA) accumulation during drought stress. Also, overexpression of StSN2 increased the relative water content (RWC) of leaves and reduced the water loss in leaves. We screened the upstream regulatory protein translation-controlled tumor protein (StTCTP) of StSN2 through DNA pull-down combined with mass spectrometry. Yeast one-hybrid (YIH), electrophoretic mobility shift assay (EMSA), and luciferase reporting assay (LUC) indicated that StTCTP binds the StSN2 promoter. Like StSN2, StTCTP was highly expressed in response to drought. Overexpression of StTCTP increased the photosynthetic rate and CAT enzyme activity, and lowered H(2)O(2) and MDA accumulation during drought. Meanwhile, overexpression of StTCTP increased leaf RWC and reduced water loss. Our research strongly suggested that StSN2 effectively cleared ROS and significantly boosted the drought resistance of potatoes. Furthermore, as a transcriptional activator of StSN2, StTCTP, much like StSN2, also enhanced the potato's drought tolerance. The results provided a foundation for the further study of StSN2 regulatory mechanisms under drought stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。