Pyruvate kinase M2 regulates kidney fibrosis through pericyte glycolysis during the progression from acute kidney injury to chronic kidney disease

在急性肾损伤进展为慢性肾病的过程中,丙酮酸激酶 M2 通过周细胞糖酵解调节肾脏纤维化

阅读:6
作者:Yulan Chen, Xueyuan Bai, Jianwen Chen, Mengjie Huang, Quan Hong, Qing Ouyang, Xuefeng Sun, Yan Zhang, Jiaona Liu, Xu Wang, Lingling Wu, Xiangmei Chen

Abstract

We aimed to investigate the role of renal pericyte pyruvate kinase M2 (PKM2) in the progression of acute kidney injury (AKI) to chronic kidney disease (CKD). The role of PKM2 in renal pericyte-myofibroblast transdifferentiation was investigated in an AKI-CKD mouse model. Platelet growth factor receptor beta (PDGFRβ)-iCreERT2; tdTomato mice were used for renal pericyte tracing. Western blotting and immunofluorescence staining were used to examine protein expression. An 5-ethynyl-2'-deoxyuridine assay was used to measure renal pericyte proliferation. A scratch cell migration assay was used to analyse cell migration. Seahorse experiments were used to examine glycolytic rates. Enzyme-linked immunoassay was used to measure pyruvate kinase enzymatic activity and lactate concentrations. The PKM2 nuclear translocation inhibitors Shikonin and TEPP-46 were used to alter pericyte transdifferentiation. In AKI-CKD, renal pericytes proliferated and transdifferentiated into myofibroblasts and PKM2 is highly expressed in renal pericytes. Shikonin and TEPP-46 inhibited pericyte proliferation, migration, and pericyte-myofibroblast transdifferentiation by reducing nuclear PKM2 entry. In the nucleus, PKM2 promoted downstream lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1) transcription, which are critical for glycolysis. Therefore, PKM2 regulates pericyte glycolytic and lactate production, which regulates renal pericyte-myofibroblast transdifferentiation. PKM2-regulated renal pericyte-myofibroblast transdifferentiation by regulating downstream LDHA and GLUT1 transcription and lactate production. Reducing nuclear PKM2 import can reduce renal pericytes-myofibroblasts transdifferentiation, providing new ideas for AKI-CKD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。