Plant Growth Promoting Rhizobacteria, PGPR, can protect plants against soil-borne diseases and abiotic stress conditions. The primary objective of this study was to evaluate the effects of different PGPRs (TF1, TF2, TF3, and TF4) on the rhizosphere microbial community of silage maize in a saline-alkaline field via Illumina MiSeq high-throughput sequencing technology. Results demonstrated that different PGPRs significantly increased the harvest density (by 21.31-45.16%), plant height (by 9.12-19.98%), stem diameter (by 30.07-45.78%), and biomass (by 33.20-65.36%) of silage maize, TF3 treatment significantly increased the fresh weight (by 32.50%), while the other treatments could increase the fresh weight but not significantly. Four microbial agents significantly reduced the contents of soil available phosphorus (AP), electrical conductivity (EC), and neutral phosphatase activity (NPA), while significantly increasing the contents of available potassium (AK), ammonium nitrogen (NH(4)(+)-N), nitrate nitrogen (NO(3)(-)-N), chitinase activity (ChtA), and urease activity (UA). Specifically, TF2 and TF3 treatments significantly decreased the soil pH value, while not for TF1 and TF4. Microbiome analysis showed that four microbial agents significantly increased the relative abundances of beneficial microorganisms, such as Arthrobacter, Blastococcus, MNDI, Chaetomidium, Alternaria, Sarocladium, Acremonium, and Clonostachys, and significantly decreased the relative abundances of Gibberella and Fusarium. Mental analysis showed that the soil bacterial community structure did not significantly correlate with soil biochemical properties, while the soil fungal community structure significantly and positively correlated with pH. Maize yield significantly and positively correlated with NH(4)(+)-N, OM, AP, EC, UA, ChtA, and NPA.
Effect of PGPRs on the Rhizosphere Microbial Community Structure and Yield of Silage Maize in Saline-Alkaline Fields.
PGPR对盐碱地青贮玉米根际微生物群落结构和产量的影响
阅读:4
作者:Zhao Weisong, Li Shezeng, Yang Wei, Cui Naqi, Lu Xiuyun, Mo Shaojing, Guo Qinggang, Ma Ping
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 20; 26(16):8040 |
| doi: | 10.3390/ijms26168040 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
