Fruit ripening in tomato fruits comprises dramatic metabolic changes that are regulated by environmental factors. Light not only drives photosynthesis but also acts as a critical signal regulating plant growth, development, and the quality of produce. However, it is unclear how plants sense light signals in the environment to regulate fruit quality. It is demonstrated that the accumulation of Long Hypocotyl 5 (HY5) protein peaks at the breaker stage of fruit maturity, independent of fruit bagging. Genetic manipulation of HY5 reveals that its knockout delays carotenoid synthesis and sucrose conversion, while its overexpression promotes fruit ripening. Molecular and biochemical analyses show that HY5 directly activates the transcript of the key carotenoid synthesis genes, such as Phytoene Synthase 1 (PSY1) and Phytoene Desaturase (PDS), as well as the sucrose metabolism genes, including Lycopersicum Invertase (LIN5, LIN6), Vacuolar Invertase (VI) and Sucrose Synthase (SS1, SS7). Importantly, grafting experiments reveal that HY5 acts as a systemic signal, translocating from leaves to fruits to promote ripening. Furthermore, nightly lighting with red or blue LED greatly improves fruit quality. In summary, the results establish that HY5 as a mobile protein that mediates the systemic light regulation of fruit ripening, offering practical applications for improving fruit quality.
Manipulating the Light Systemic Signal HY5 Greatly Improve Fruit Quality in Tomato.
调控光系统信号HY5可显著提高番茄果实品质
阅读:4
作者:Wang Jiachun, Li Xiaomeng, Li Jiajia, Dong Han, Hu Zhangjian, Xia Xiaojian, Yu Jingquan, Zhou Yanhong
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Jun;12(23):e2500110 |
| doi: | 10.1002/advs.202500110 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
