Exploring FKBP12's Role in Enhancing Drought Tolerance in Rice.

探究FKBP12在提高水稻耐旱性中的作用

阅读:5
作者:Jiang Yaohuang, Qiao Yu, Ye Chenxi, Chen Fei, Zhang Yanli, Ma Yingying, Wang Sining, Wu Limin, Ruan Banpu, Yu Yanchun
Rice, as the largest consumer of global freshwater resources, faces significant challenges due to increasing drought conditions exacerbated by climate change. In this study, we explore the critical role of FKBP12, a molecular chaperone protein, in modulating drought tolerance in rice. Utilizing a T-DNA insertional mutant (fkbp12) and FKBP12-overexpressing lines, we investigated the gene's influence on rice under various drought conditions. Our results revealed that the fkbp12 mutant exhibited significantly enhanced drought tolerance compared to the wild type, evidenced by improved water retention, reduced cellular damage, and an upregulated expression of key drought-responsive genes such as OsNCED3, OsSNAC1, and OsDREB2A. This suggests a compensatory upregulation of abscisic acid (ABA)-mediated pathways, enhancing the plant's ability to cope with water deficit. Conversely, overexpression of FKBP12 resulted in increased sensitivity to drought, likely due to disruption in stress signaling and reactive oxygen species (ROS) scavenging mechanisms. Additionally, we observed an impact on seed development, where the fkbp12 mutant presented smaller seed sizes, indicating a potential trade-off between growth and stress tolerance. This comprehensive analysis not only highlights the diverse roles of FKBP12 in drought stress response but also its implications for rice yield and seed development, providing valuable insights for breeding more resilient rice varieties in the face of escalating climate challenges.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。