Granulosa cells (GCs) are essential for follicular growth and development, and their functional state critically impacts folliculogenesis. TAp73α, a transcriptionally active isoform of the p73 gene, is crucial for maintaining follicular integrity. In this study, we demonstrate that TAp73α overexpression promotes ferroptosis in bovine GCs by downregulating SLC7A11, depleting intracellular glutathione (GSH), and enhancing lipid peroxidation, particularly under Erastin treatment. By contrast, TAp73α knockdown restores antioxidant capacity, elevates GSH levels, and attenuates ferroptosis. To elucidate the underlying mechanism, untargeted metabolomic profiling revealed that TAp73α overexpression significantly altered the metabolic landscape of GCs, with marked enrichment in the glutathione metabolism pathway. Notably, betaine-a metabolite closely linked to redox homeostasis-was markedly downregulated. Functional assays confirmed that exogenous betaine supplementation restored SLC7A11 expression, increased GSH levels, and alleviated oxidative damage induced by either H(2)O(2) or TAp73α overexpression. Moreover, betaine co-treatment effectively reversed lipid peroxide accumulation and mitigated TAp73α-induced ferroptosis. Collectively, our findings identify a novel mechanism by which TAp73α promotes ferroptosis in granulosa cells through the suppression of betaine and glutathione metabolism, highlighting betaine as a key metabolic modulator with promising protective potential.
Metabolomic Analysis Identifies Betaine as a Key Mediator of TAp73α-Induced Ferroptosis in Ovarian Granulosa Cells.
代谢组学分析发现甜菜碱是 TAp73α 诱导卵巢颗粒细胞铁死亡的关键介质
阅读:4
作者:Mei Liping, Chen Le, Zhang Bingfei, Jia Xianbo, Gan Xiang, Sun Wenqiang
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 24; 26(13):6045 |
| doi: | 10.3390/ijms26136045 | 研究方向: | 代谢、细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
