Lettuce (Lactuca sativa L.) is sensitive to high temperatures, and the growth is inhibited under excessive temperature. Spermidine can improve the ability of lettuce to tolerate high temperatures, however, the molecular mechanism was poorly understood. The molecular mechanism of lettuce response to heat stress (2h) were investigated by physiology, transcriptome, and proteome. The results showed that 781 differentially expressed genes (DEGs) and 255 differentially expressed proteins (DEPs) were detected in lettuce treated with spermidine under heat stress. The DEGs and DEPs of lettuce were treated with 1Â mM spermidine under high temperatures stress. There were 718/236 genes/proteins with the same expression trend. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the genes were mainly enriched in intracellular signal transduction and carbohydrate metabolism pathways, which stimulated the expression of genes/proteins related to hormone and mitogen-activated protein kinase (MAPK) signal transduction pathways, starch and sucrose metabolism, pentose and glucose mutual transformation pathways. It also increased the contents of auxin and cytokinin, starch and soluble sugar. String network analysis showed that spermidine promoted material transport and antioxidant enzyme activity to improve lettuce resist high-temperature stress by removing superoxide radicals, binding and central transport of nuclear pores. In summary, signal transduction and gluconeogenic pathways may be the main ways in which spermidine improve lettuce to tolerate in heat stress. These results increase the understanding of the heat tolerance of lettuce at the transcriptional and protein levels, and provide a better understanding of the heat tolerance mechanism of lettuce.
Integrated transcriptomics and proteomics revealed that exogenous spermidine modulated signal transduction and carbohydrate metabolic pathways to enhance heat tolerance of lettuce.
整合转录组学和蛋白质组学研究表明,外源亚精胺调节信号转导和碳水化合物代谢途径,从而增强生菜的耐热性
阅读:6
作者:Duan Yipei, Sun Wenjing, Wang Qian, Cao Lingling, Wang Huiyu, Hao Jinghong, Han Yingyan, Liu Chaojie
| 期刊: | BMC Plant Biology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Jun 4; 25(1):754 |
| doi: | 10.1186/s12870-025-06781-7 | 研究方向: | 代谢、信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
