Rab11a-dependent recycling of Glut3 inhibits seizure-induced neuronal disulfidptosis by alleviating glucose deficiency.

Rab11a 依赖的 Glut3 再循环通过缓解葡萄糖缺乏来抑制癫痫引起的神经元二硫键凋亡

阅读:7
作者:Li Sijun, He Junrui, Kuang Huimin, Wang Xiaojuan, Zhou Muhua, Li Dongmei, Kang Baoren, He Honghu, He Lina, Lin Wei, Lv Yuan
Seizures can trigger neuronal glucose deficiency, thereby inducing disulfidptosis. Disulfidptosis is a novel cell death mechanism characterized by the abnormal accumulation of disulfide caused by glucose deficiency. However, the mechanism underlying disulfidptosis caused by glucose deficiency in seizures remains elusive. Rab11a-dependent recycling of glucose transporter 3 (Glut3) is closely related to glucose metabolism in neurons, which may contribute to neuronal disulfidptosis after seizures by abnormal glucose metabolism. So here we introduced a well-established in vitro model of seizures to evaluate cell survival, glucose levels, disulfidptosis biomarkers, Glut3 and Rab11a expression, the recycling ratio of Glut3, and the protein complex of Glut3-Rab11a. Cell survival rates and glucose levels were lower in the in vitro model of seizures, accompanied by elevated levels of disulfidptosis markers. Moreover, the surface expression and the recycling ratio of Glut3, as well as the protein complex of Glut3-Rab11a, were positively correlated with Rab11a expression. Lastly, Rab11 overexpression improved cell survival rates, increased glucose levels, and decreased the levels of disulfidptosis biomarkers in the in vitro model of seizure. Rab11a-dependent recycling of Glut3 inhibited seizure-induced neuronal disulfidptosis by alleviating glucose deficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。