BACKGROUND: Non-small cell lung cancer (NSCLC) poses a major threat to human health, METTL3 has been reported to promote numerous tumor development by inhibiting ferroptosis. The aim of the present study was to explore the mechanism of action of METTL3 in NSCLC. METHODS: The UALCAN online platform was applied to analyze METTL3 and PTEN expression in NSCLC and their relationship with tumor stages. NCI-H23 and NCI-H1975 cells were transfected with sh-METTL3, or oe-METTL3 respectively. Then EdU assay was employed to assess cell proliferation and the transwell assay was employed to assess the ability of cells to migrate and invade. Apoptosis was detected using flow cytometry. In addition, m6A methylation levels, oxidative stress indicators, and Fe(2+) content were determined. Furthermore, GPX4 and PTEN expression, as well as PI3K and AKT phosphorylation were quantified. Finally, the cells with METTL3 knockdown were further transfected with sh-PTEN. RESULTS: METTL3 expression was up-regulated in NSCLC and was closely related to the tumor stages. METTL3 overexpression significantly promoted the malignant phenotype of NSCLC cells, increased the methylation level of m6A mRNA, reduced oxidative stress, inhibited the occurrence of ferroptosis and apoptosis, and led to increased expression of GPX4 and activation of the PTEN/PI3K/AKT pathway. Conversely, METTL3 knockdown produced the opposite effect. Importantly, METTL3 knockdown-induced oxidative stress and ferroptosis in NCI-H23 cells were rescued by sh-PTEN or ferroptosis inhibitor Ferrostatin-1. CONCLUSION: METTL3 may inhibit ferroptosis in NSCLC by activating the PTEN/PI3K/AKT pathway, suggesting that METTL3-mediated PTEN/PI3K/AKT pathway may be a promising therapeutic target for NSCLC.
The m6A methyltransferase METTL3 affects ferroptosis in non-small cell lung cancer by regulating the PTEN/PI3K/AKT pathway.
m6A 甲基转移酶 METTL3 通过调节 PTEN/PI3K/AKT 通路影响非小细胞肺癌中的铁死亡
阅读:9
作者:Wu Bin, Li Danhong, Wang Yu, Pan Tingting, Xu Jieru, Li Lihong
| 期刊: | Discover Oncology | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 18; 16(1):559 |
| doi: | 10.1007/s12672-025-02330-8 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肺癌 | 信号通路: | PI3K/Akt |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
