Vitamin A attenuates PFOS-induced neurotoxicity and alters early proximity patterns to conspecifics in zebrafish larvae.

维生素 A 可减轻 PFOS 引起的神经毒性,并改变斑马鱼幼体早期与同类亲缘关系的模式

阅读:4
作者:Jiang Peiyun, Wang Jingyu, Wang Xiaoying, Zou Li, Wu Di, Xu Qu, Jiang Yue, Yao Mengmeng, Hong Qin, Chi Xia
INTRODUCTION: Perfluorooctane sulfonic acid (PFOS), a persistent perfluoroalkyl substance with ubiquitous environmental distribution and bioaccumulative potential, has raised significant public health concerns due to its association with neurodevelopmental disorders. This study investigates vitamin A's neuroprotective capacity against PFOS-induced toxicity, particularly focusing on social behavior deficits-a core phenotype of autism spectrum disorder (ASD). METHODS: Zebrafish larvae were exposed to 1 μM or 5 μM PFOS (with/without 5 nM vitamin A co-treatment) from 24-144 hours post-fertilization (hpf). Control groups received 0.01% DMSO (vehicle) or 5 nM vitamin A alone. Developmental parameters (body length, heart rate), locomotor activity (total distance moved), and neurobehavioral endpoints (conspecific interaction) were quantified using automated tracking systems (ViewPoint ZebraLab). Neurochemical alterations were assessed through qPCR (dopaminergic genes) and AO staining (apoptosis). RESULTS: PFOS exposure (5 μM) significantly increased inter-individual distance (IID) and reduced physical contact frequency during social interaction tests. Neurochemical analyses revealed concurrent dopamine transporter downregulation and apoptosis-related gene activation . Vitamin A co-treatment attenuated these effects. DISCUSSION: Our findings demonstrate that PFOS disrupts early social neurodevelopment through dopaminergic dysregulation and apoptotic signaling, while vitamin A exhibits counteractive potential. this study elucidates the impact of PFOS exposure on zebrafish social behavior and brain development. while highlighting the neuroprotective potential of vitamin A against PFOS exposure, These findings have significant guiding implications for the development of public health policy and provide a scientific foundation for comprehending the neurotoxicity of PFOS and developing effective intervention measures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。