OBJECTIVE: Chronic Kidney Disease (CKD) frequently leads to Mineral Bone Disorder (MBD), which significantly affects patient quality of life due to bone fragility and metabolic disturbances. This study investigates the role of Casein Kinase 2 (CK2) and Ubiquitin-Specific Protease 7 (USP7) in modulating Runt-related Transcription Factor 2 (RUNX2)-driven osteogenesis in a CKD-MBD mouse model. METHODS: A CKD-MBD mouse model was established using 5/6 nephrectomy. Bioinformatic analysis of CKD-related datasets identified RUNX2 and USP7 as key genes implicated in bone metabolism. In vivo and in vitro experiments were conducted to assess the effects of CK2-mediated phosphorylation and USP7-induced deubiquitination on RUNX2 stability and function. Histomorphometry, Enzyme-Linked Immunosorbent Assay (ELISA), and micro-CT analyses were performed to evaluate bone density, strength, and metabolic markers. RESULTS: RUNX2 and USP7 were significantly downregulated in CKD-MBD mice. Silencing RUNX2 impaired osteoblast differentiation, reduced bone density, and increased bone turnover, while CK2 overexpression restored RUNX2 activity by phosphorylation, recruiting USP7 to stabilize RUNX2. Enhanced osteoblast differentiation and improved bone metabolism were observed in CKD-MBD mice upon CK2 activation. CONCLUSION: CK2 activation promotes RUNX2 phosphorylation and stabilization by USP7, leading to improved osteogenesis and bone metabolism in CKD-MBD. Targeting the CK2/USP7/RUNX2 axis presents a potential therapeutic strategy for managing CKD-related bone disorders.
Targeting casein kinase 2 and ubiquitin-specific protease 7 to modulate RUNX2-mediated osteogenesis in chronic kidney disease.
靶向酪蛋白激酶 2 和泛素特异性蛋白酶 7 来调节慢性肾脏病中 RUNX2 介导的成骨作用
阅读:5
作者:Lan Haifeng, Yu Xiao-Jun, Ling Guangsheng, Zeng Yuwei, Yang Yixi, He Meiyang, Yu Yixiao, Shao Ming
| 期刊: | Molecular Medicine | 影响因子: | 6.400 |
| 时间: | 2025 | 起止号: | 2025 May 30; 31(1):214 |
| doi: | 10.1186/s10020-025-01222-5 | 研究方向: | 表观遗传 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
