DMAHDM@MPC nanoparticles in orthodontic adhesive inhibit cariogenic bacteria and sugar metabolism to prevent enamel demineralization.

正畸粘合剂中的 DMAHDM@MPC 纳米颗粒可抑制致龋细菌和糖代谢,从而防止牙釉质脱矿

阅读:4
作者:Su Chengjun, Zhu Mengyao, Guo Yiman, Sun Jiachen, Liu Miao, Ma Yansong, Xu Yan, Bai Yuxing, Che Xiaoxia, Zhang Ning
During orthodontic treatment, poor oral hygiene often facilitates the proliferation of cariogenic bacteria, particularly Streptococcus mutans, leading to lactic acid accumulation and subsequent enamel demineralization. To mitigate this issue, Dimethylaminohexadecyl methacrylate (DMAHDM) was incorporated onto the protein-repellent surface of 2-Methacryloyloxyethyl phosphorylcholine (MPC), resulting in the formation of a DMAHDM@MPC composite. This composite was then integrated into resin-modified glass ionomer cement (RMGIC) to develop an antimicrobial orthodontic adhesive, termed RMGIC + MPC + DMAHDM (RMD). This study demonstrated that DMAHDM@MPC nanoparticles self-assembled into a core-shell structure, thereby enhancing the antimicrobial activity. A six-month randomized controlled trial (RCT) involving 29 orthodontic patients, along with metagenomic and metabolomic analyses, revealed that RMD significantly reduced plaque accumulation by selectively inhibiting pathogenic bacteria while preserving beneficial microbiota. Additionally, MPC was shown to competitively bind to sucrose-6-phosphatase (SPP) in pathogenic bacteria, inhibiting sucrose synthesis and carbohydrate metabolism, thus reducing the production of organic acids. In conclusion, RMD effectively prevents enamel demineralization by selectively targeting cariogenic bacteria and their associated sugar metabolism pathways during orthodontic treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。