Improving cellulosic ethanol production by an engineered yeast consortium displaying a pentafunctional mini-cellulosome.

利用具有五功能微型纤维素酶体的工程酵母菌群提高纤维素乙醇的产量

阅读:12
作者:Song Xiaofei, Zhang Jianze, Fu Siyu, Liu Ziyi, Chen Yan, Zhu Tingheng
As a traditional ethanol-producing microorganism, Saccharomyces cerevisiae is an ideal host for consolidated bioprocessing. However, when overloaded cellulase genes are expressed in yeast, the metabolic burden on cells may greatly affect cell growth and cellulosic ethanol production. In this study, we developed a yeast consortium system that secretes and assembles five types of cellulases on the yeast cell surface to improve cellulosic ethanol production. This system involves one display strain, which provides the scaffoldin on the surface and several secretion strains that secrete each cellulase. The secreted dockerin-containing enzymes, cellobiohydrolase (CBH), endoglucanase (EG), β-glucosidase (BGL), cellobiose dehydrogenase (CDH), and lytic polysaccharide monooxygenase (LPMO), were randomly assembled to the scaffoldin to generate a pentafunctional mini-cellulosome via cohesion-dockerin interactions. The developed system relieved the metabolic burden placed on the engineered single yeast strain and leveraged the innate metabolic potential of each host. In addition, the enzymes in the consortium acted synergistically and efficiently boosted cellulose degradation and ethanol production. When compared with the conventional system, this consortium system increased the ethanol titers from 2.66 to 4.11 g/l with phosphoric acid swollen cellulose (PASC) as the substrate, an improvement of 55%. With Avicel as the substrate, ethanol titers increased from 1.57 to 3.24 g/l, representing an enhancement of 106%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。