Intervertebral disc degeneration (IVDD) is a prevalent condition leading to low back pain. Endoplasmic reticulum stress (ERS) is strongly linked to IVDD progression, although the underlying mechanisms remain unclear. In this study, we investigated the effects of NOXA on ERS-induced IVDD. Primary nucleus pulposus cells (NPCs) were stimulated with Thapsigargin to mimic the ERS microenvironment in IVDD. Western blot analysis, PCR, immunofluorescence, and immunohistochemistry assay were performed to measure the expression levels of PERK, NOXA, and cell apoptosis- and extracellular-matrix-degradation-relevant proteins. JC-1 fluorescent probes, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and flow cytometry were used to measure mitochondrial function and apoptosis in NPCs under ERS conditions. Magnetic resonance imaging, Safranin O staining, alcian blue staining, and immunohistochemistry were performed to estimate the effects of NOXA knockdown on acupuncture-mediated IVDD in rats at both imaging and histological levels. The results showed that ERS induced and activated the PERK pathway during IVDD development. Mechanically, ERS induced NPC apoptosis and ECM degradation by upregulating PERK expression and activating NOXA expression. The genetic overexpression of NOXA inhibited cell proliferation and increased apoptosis, whereas its knockdown decreased MCL-1 expression and alleviated IVDD degeneration in human NPCs and rat models. NOXA plays a crucial role in the PERK/NOXA/MCL-1 axis, mediating the link between ERS and IVDD. Targeting NOXA expression may be an effective method for treating IVDD, laying the foundation for future research on molecular mechanisms and the development of new therapies.
NOXA exacerbates endoplasmic-reticulum-stress-induced intervertebral disc degeneration by activating apoptosis and ECM degradation.
NOXA 通过激活细胞凋亡和 ECM 降解加剧内质网应激引起的椎间盘退变
阅读:5
作者:Liu Zhiming, Lu Hui, Zhang Xianjuan, Tang Shuai, Lin Antao, Han Shuo, Ma Xuexiao
| 期刊: | Cell Death Discovery | 影响因子: | 7.000 |
| 时间: | 2025 | 起止号: | 2025 May 28; 11(1):257 |
| doi: | 10.1038/s41420-025-02539-0 | 研究方向: | 细胞生物学 |
| 信号通路: | Apoptosis | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
