Polystyrene Microplastics and Cadmium Drive the Gut-Liver Axis Through the TLR4/MyD88/NF-κB Signaling Pathway to Cause Toxic Effects on Broilers.

聚苯乙烯微塑料和镉通过 TLR4/MyD88/NF-β 信号通路驱动肠-肝轴,从而对肉鸡造成毒性作用

阅读:4
作者:Fan Ruiwen, Tian Wenqi, Qin Chen, Li Peng, Sun Yuhang, Long Miao, Yang Shuhua
Nowadays, the risk of oral intake of microplastics (MPs) and cadmium (Cd) by poultry is high. In some industrially polluted areas, the chicken feed samples contain 9.60 × 10(2) ± 1.09 × 10(2) MPs per kilogram (mean ± std) in wet weight, and the Cd content in chicken feed has been detected to reach up to 5.61 mg/kg. But scholars still focus more on the toxic effects of MPs and Cd on the liver and intestines of aquatic animals. There are few studies that use poultry as research animals and consider these two organs as an integrated system to investigate the toxicity of MPs and Cd on the gut-liver axis and the mechanisms of inflammation. Therefore, in this research, broilers were used as experimental subjects, and experimental models were established by single or combined exposure of MPs (100 mg/L) and Cd (140 mg/kg) to explore the effects of MPs and Cd on the intestinal mucosae and liver of broilers, as well as the mechanisms behind these toxic effects. In this study, the degree of adverse effects (decreased expression of tight junction proteins, changes in intestinal morphology, abundance and diversity of intestinal flora, liver inflammation) caused by the single exposure group was higher than that of the combined exposure group. The results showed that MPs and Cd induced intestinal damage and liver inflammation in broilers by interfering with the TLR4/MyD88/NF-κB pathway and intestinal flora homeostasis. The toxicity of combined exposure was lower than that of single exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。