Hypoxia-inducible APCDD1L-AS1 promotes osimertinib resistance by stabilising DLST to drive tricarboxylic acid cycle in lung adenocarcinoma.

缺氧诱导的 APCDD1L-AS1 通过稳定 DLST 来驱动肺腺癌中的三羧酸循环,从而促进奥希替尼耐药性

阅读:4
作者:Zhang Quanli, Shen Ye, Che Yuru, Jia Lili, Xiao Xiang, Xu Hao, Su Chi, Sun Kemin, Zheng Limin, Xu Jiawen, Hu Jingwen, Zhang Chaofeng, Zhu Dihan, Li Ming
Acquired resistance is unavoidable in lung adenocarcinoma (LUAD) treated with osimertinib, however, the underlying mechanisms remain largely unknown. Here, we report that the long non-coding RNA (lncRNA) APCDD1L-AS1 is upregulated in osimertinib-resistant LUAD tissues and cells and is associated with short survival of osimertinib-resistant LUAD patients. Our data showed that APCDD1L-AS1 upregulation is an independent risk factor for overall survival in patients with osimertinib-resistant LUAD. APCDD1L-AS1 knockdown enhanced osimertinib sensitivity both in vitro and in vivo, whereas APCDD1L-AS1 overexpression promoted osimertinib resistance. Mechanistically, APCDD1L-AS1 accelerates the tricarboxylic acid (TCA) cycle by forming complexes and maintaining the stability of dihydrolipoamide S-succinyltransferase (DLST), which inhibits the ubiquitination and degradation of DLST. Moreover, we demonstrate that hypoxia-inducible factor (HIF)-1α transcriptionally activates APCDD1L-AS1 by binding to the APCDD1L-AS1 promoter region under hypoxic conditions. Overall, our data confirm that APCDD1L-AS1 is upregulated by hypoxia-induced HIF-1α, which drives the TCA cycle by stabilising DLST to further promote osimertinib resistance in LUAD. Our findings provide new insights into the role of HIF-1α/APCDD1L-AS1/DLST axis-related reprogramming of hypoxia and the TCA balance in conferring osimertinib resistance in LUAD and confirm the therapeutic potential for targeting the APCDD1L-AS1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。