Aging is a risk factor for multiple retinal degeneration diseases. Entraining brain gamma oscillations with gamma-flicker light (γFL) has been confirmed to coordinate pathological changes in several Alzheimer's disease mouse models and aged mice. However, the direct effect of γFL on retinal aging remains unknown. We assessed retinal senescence-associated beta-galactosidase (β-gal) and autofluorescence in 20-month-old mice and found reduced β-gal-positive cells in the inner retina and diminished lipofuscin accumulation around retinal vessels after 6 days of γFL. In immunofluorescence, γFL was further demonstrated to ameliorate aging-related retinal changes, including a decline in microtubule-associated protein 1 light chain 3 beta expression, an increase in complement C3 activity, and an imbalance between the anti-oxidant factor catalase and pro-oxidant factor carboxymethyl lysine. Moreover, we found that γFL can increase the expression of activating transcription factor 4 (ATF4) in the inner retina, while revealing a decrease of ATF4 expression in the inner retina and positive expression in the outer segment of photoreceptor and RPE layer for aged mice. Western blotting was then used to confirm the immunofluorescence results. After mRNA sequencing (NCBI Sequence Read Archive database: PRJNA748184), we found several main mechanistic clues, including mitochondrial function and chaperone-mediated protein folding. Furthermore, we extended γFL to aged Apoe(-/-) mice and showed that 1-m γFL treatment even improved the structures of retinal-pigment-epithelium basal infolding and Bruch's membrane. Overall, γFL can orchestrate various pathological characteristics of retinal aging in mice and might be a noninvasive, convenient, and tissue-specific therapeutic strategy for retinal aging.
Tissue-Specific Gamma-Flicker Light Noninvasively Ameliorates Retinal Aging.
组织特异性伽马闪烁光无创改善视网膜老化
阅读:4
作者:Sheng Wang, Lv Da, Cui Ze-Kai, Wang Yi-Ni, Lin Bin, Tang Shi-Bo, Chen Jian-Su
| 期刊: | Cellular and Molecular Neurobiology | 影响因子: | 4.800 |
| 时间: | 2022 | 起止号: | 2022 Nov;42(8):2893-2907 |
| doi: | 10.1007/s10571-021-01160-w | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
