Triple-negative breast cancer (TNBC) is an exceptionally aggressive malignancy with poor prognosis. Patients often have elevated mortality and recurrence rates, along with a pronounced risk of distant metastasis. Our earlier research highlighted the role of uncarboxylated osteocalcin (GluOC) in fueling TNBC cell proliferation and metastasis; however the molecular underpinnings of its impact on cancer invasion and migration remain enigmatic. In this study, we identified miR-143-3p as a significantly downregulated miRNA following GluOC treatment in TNBC cells. Notably, increased miR-143-3p has been linked to more favorable clinical outcomes in patients with TNBC. miR-143-3p expression has been shown to target and repress the expression of SP7. Furthermore, our findings indicate that GluOC modulates the miR-143-3p/PI3K/Akt signaling pathway, which in turn fosters the invasive and migratory capabilities of TNBC cells. In a xenograft animal model, we observed that the administration of GluOC led to a marked enhancement in tumor growth. Conversely, the delivery of miR-143-3p agomir was associated with a notable reduction in tumor growth. Notably, concurrent administration of miR-143-3p agomir and GluOC partially abrogated the tumorigenic effects induced by GluOC alone. Furthermore, GluOC downregulated the expression of miR-143-3p. Our study findings indicate that GluOC plays a role in the invasion and migration of TNBC cells by regulating the miR-143-3p/SP7 and miR-143-3p/PI3K/Akt axes. These insights suggest that GluOC and miR-143-3p are integral to the invasive and migratory processes of TNBC cells and may serve as promising targets for therapeutic interventions in TNBC.
Uncarboxylated osteocalcin induced miR-143-3p targets SP7 and activates PI3K/Akt signaling in TNBC cells to promote invasion and migration.
未羧化的骨钙素诱导 miR-143-3p 靶向 SP7 并激活 TNBC 细胞中的 PI3K/Akt 信号通路,从而促进侵袭和迁移
阅读:4
作者:Du Qian, Xu Jiaojiao, Zhang Miao, Yang Jianhong
| 期刊: | Translational Oncology | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;53:102305 |
| doi: | 10.1016/j.tranon.2025.102305 | 研究方向: | 信号转导、细胞生物学 |
| 信号通路: | PI3K/Akt | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
