ROBO1 enhanced esophageal carcinoma cell radioresistance through accelerating G3BP2-mediated eIF3A degradation.

ROBO1 通过加速 G3BP2 介导的 eIF3A 降解来增强食管癌细胞的放射抗性

阅读:4
作者:Zhai Chunmei, Sun Xiaorong, Zhang Song, Xing Ligang
Radiotherapy, as a vital means of esophageal cancer treatment, has benefited countless cancer patients, but owing to the occurrence of radio-resistance, its therapeutic efficiency has been dramatically mitigated. Discovering key biomarkers governing radio-tolerance in esophageal cancer and revealing their inherent molecular mechanisms will be of great significance for clinical cancer treatment. Here, we have found roundabout guidance receptor 1 (ROBO1) was significantly upregulated in esophageal cancerous tissues and showed enhanced expression with the development of cancer staging. Cellular experiments demonstrated ROBO1 directly interacted with eukaryotic translation initiation factor 3A (eIF3A) and accelerated its degradation in esophageal cancer cells after irradiation treatment. Mass spectrum analysis further revealed that in response to irradiation, ROBO1, eIF3A and G3BP2 (Ras GTPase-activating protein-binding protein 2) formed a hetero-complex and triggered lysosomes-mediated protein degradation. Knocking down of G3BP2 abrogated the influence of ROBO1 on eIF3A instability. Besides, ROBO1-mediated eIF3A degradation interrupted P53 translation process which in turn provoked downstream mTOR signaling and increased DNA repair associated genes expressions, resulting in radio-resistance enhancement in cancer cells. In conclusion, our findings revealed a novel role of eIF3A in modulating P53/mTOR signaling activity and provided a drug candidate (ROBO1) for overcoming radio-resistance in esophageal cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。