Protein self-assembly allows for the formation of diverse supramolecular materials from relatively simple building blocks. In this study, a single-component self-assembling hydrogel is developed using the recombinant protein CsgA, and its successful application for spinal cord injury repair is demonstrated. Gelation is achieved by the physical entanglement of CsgA nanofibrils, resulting in a self-supporting hydrogel at low concentrations (â¥5 mg mL(-1)). By leveraging the programmability of the CsgA gene sequence, the bioactive hydrogel is enhanced by fusing functional peptide GHK. GHK is recognized for its anti-inflammatory, antioxidant, and neurotrophic factor-stimulating properties, making it a valuable addition to the hydrogel for spinal cord injury repair applications. In vitro experiments demonstrate that the CsgA-GHK hydrogel can modulate microglial M2 polarization, promote neuronal differentiation of neural stem cells, and inhibit astrocyte differentiation. Additionally, the hydrogel shows efficacy in alleviating inflammation and promotes neuronal regeneration at the injury site, leading to significant functional recovery in a rat model with compression injury spinal cord cavity. These findings lay the groundwork for developing a modular design platform for recombinant CsgA protein hydrogels in tissue repair applications.
Genetically Programmed Single-Component Protein Hydrogel for Spinal Cord Injury Repair.
用于脊髓损伤修复的基因编程单组分蛋白水凝胶
阅读:7
作者:Wei Yi, Zhou Xiaolin, Li Zhenhua, Liu Qing, Ding Han, Zhou Yunlong, Yin Ruo-Feng, Zheng Lifei
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;12(10):e2405054 |
| doi: | 10.1002/advs.202405054 | 研究方向: | 毒理研究 |
| 疾病类型: | 脊髓损伤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
