BACKGROUND: Hepatic fibrosis (HF) continues to be a significant global health concern, substantially contributing to morbidity and mortality due to the absence of effective therapeutic options. This study examines the pharmacological effectiveness and underlying mechanisms of Notoginsenoside R2 (R2) in mitigating HF, aiming to find a new multifunctional candidate for therapeutic application. METHODS: An integrative methodology utilizing network pharmacology, molecular docking, and experimental validation was implemented. In vitro models (HSC-T6), in vivo systems (zebrafish), and microinjection of morpholinos were employed to corroborate the antifibrotic effects of R2 and transcription 3 (STAT3)-dependent processes. RESULTS: Network pharmacology identified 32 common targets between R2 and HF, with a particular emphasis on pathways critical for the activation of HSCs. Molecular docking confirmed strong interactions between R2 and signal transducer and activator of STAT3. In vitro, R2 inhibited HSCs proliferation and decreased the expression of α-SMA, COL-I, Desimin and TIMP1. In vivo, R2 mitigated thioacetamide-induced fibrosis in zebrafish, leading to decreased collagen deposition and suppression of pro-inflammatory cytokines. Mechanistically, R2 induced senescence in HSCs via the STAT3 pathway, characterized by increased expression of cyclin-dependent kinase inhibitor 2A (CDKN2A/p16) and cyclin-dependent kinase inhibitor 1A (CDKN1A/p21), as well as components of the senescence-associated secretory phenotypes (SASPs). CONCLUSION: This study identified R2 as a regulator of STAT3 with dual antifibrotic effects: reduction of the inflammatory microenvironment and induction of senescence. These findings position R2 as a viable treatment candidate for HF, necessitating additional clinical investigation.
Notoginsenoside R2 attenuates hepatic fibrosis via STAT3-dependent hepatic stellate cells senescence induction and inflammatory microenvironment suppression.
三七皂苷R2通过STAT3依赖性肝星状细胞衰老诱导和炎症微环境抑制来减轻肝纤维化
阅读:4
作者:Deng Kaili, Li Min, Li Yuanyuan, Xiang Liangliang, Wang Yuhua, Shi Hechen, Cheng Jiayi, Huang Sha, Lv Zhiping
| 期刊: | Journal of Ginseng Research | 影响因子: | 5.600 |
| 时间: | 2025 | 起止号: | 2025 Sep;49(5):574-584 |
| doi: | 10.1016/j.jgr.2025.05.007 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肝炎 | 信号通路: | Senescence |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
