The regulation of the charged microenvironment around implants is an effective way to promote osseointegration. Although homeostasis of the charged microenvironment plays an integral role in tissues, current research is externally invasive and unsuitable for clinical applications. In this study, functional materials with different surface potential differences are prepared by changing the spatial layout of Ta and Ag on the surface of a Ti-6Al-4V alloy (TC4). This naturally formed an endogenous electric field (EEF) with a negatively charged cell membrane after in vivo implantation and promoted osseointegration at the interface between the bone and implant through the upregulation of Ca(2+) concentration and activation of subsequent pathways. Interestingly, the promotion of stem cell differentiation, regulation of the direction of immune cell polarization, and antibacterial efficacy are determined by the free charge contained in the implant, rather than by the magnitude of the surface potential difference. This functional implant represents a unique strategy for regulating the charged microenvironment around the implant and enhancing osseointegration, thereby providing ideas and technical approaches for the clinical development of novel implant materials.
Enhancement of Osseointegration via Endogenous Electric Field by Regulating the Charge Microenvironments around Implants.
通过调节植入物周围的电荷微环境,利用内源性电场增强骨整合
阅读:3
作者:Xu Fangfang, Zhao Guangbin, Gong Yuxin, Liang Xiang, Yu Ming, Cui Hao, Xie Linyang, Zhu Nan, Zhu Xuan, Shao Xiaoxi, Qi Kun, Lu Bingheng, Tu Junbo, Na Sijia
| 期刊: | Advanced Healthcare Materials | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Mar;14(6):e2403388 |
| doi: | 10.1002/adhm.202403388 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
