The RNA Binding Protein Bcas2 is Required for Antibody Class Switch in Activated-B Cells.

RNA结合蛋白Bcas2是活化B细胞抗体类别转换所必需的

阅读:6
作者:Chen Yu, Sun Siyuan, Lu Chenxu, Li Yixuan, Fang Bing, Tang Xiangfeng, Li Xuepeng, Yu Weiru, Lei Yumei, Sun Longjie, Zhang Ming, Sun Jiazeng, Liu Ping, Luo Yongting, Zhao Xingwang, Zhan Jing, Liu Libing, Liu Rong, Huang Jiaqiang, Yi Ziwei, Yu Yifei, Xiao Weihan, Ding Zheng, Li Lei, Su Dan, Ren Fazheng, Cao Changchang, Wang Ran, Shi Wenbiao, Chen Juan
In children, hyper-IgM syndrome type 1 (HIGM1) is a type of severe antibody disorder, the pathogenesis of which remains unclear. The antibody diversity is partially determined by the alternative splicing (AS) in the germline, which is mainly regulated by RNA-binding proteins, including Breast cancer amplified sequence 2 (Bcas2). However, the effect of Bcas2 on AS and antibody production in activated B cells, the main immune cell type in the germline, remains unknown. To fill this gap, we created a conditional knockout (cKO, B cell-specific AID-Cre Bcas2 (fl/fl)) mouse model and performed integrated mechanistic analysis on alternative splicing (AS) and CSR in B cells through the RNA-sequencing approach, cross-linking immunoprecipitation and sequencing (CLIP-seq) analysis, and interactome proteomics. The results demonstrate that Bcas2-cKO significantly decreased CSR in activated B cells without inhibiting the B cell development. Mechanistically, Bcas2 interacts with SRSF7 at a conservative circular domain, forming a complex to regulate the AS of genes involved in the post-switch transcription, thereby causing broad-spectrum changes in antibody production. Importantly, we identified GAAGAA as the binding motif of Bcas2 to RNAs and revealed its essential role in the regulation of Bcas2-dependent AS and CSR. In addition, we detected a mutation of at the 3'UTR of Bcas2 gene in children with HIGM1 and observed similar patterns of AS events and CSR in the patient that were discovered in the Bcas2-cKO B cells. Combined, our study elucidates the mechanism by which Bcas2-mediated AS affects CSR, offering potential insights into the clinical implications of Bcas2 in HIGM1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。