Postsynaptic response to stimulation of the Schaffer collaterals with properties similar to those of synaptosomal aspartate release

对 Schaffer 侧支刺激的突触后反应,其特性类似于突触体天冬氨酸释放

阅读:9
作者:Xuying Zhang, J Victor Nadler

Abstract

Aspartate satisfies all the criteria normally required for identification of a CNS neurotransmitter. Nevertheless, little electrophysiological evidence supports the existence of aspartate transmission. In studies with rat hippocampal synaptosomes, chemically evoked aspartate release differed from glutamate release in its relative sensitivity to increased Ca(2+) concentration outside the presynaptic active zones, inefficient coupling to P/Q-type Ca(2+) channels, sensitivity to KB-R7943, and resistance to native Clostridial toxins. We took advantage of these differences to search for a potential aspartate-mediated response at Schaffer collateral synapses in organotypic hippocampal slice cultures. The slice cultures were pretreated with botulinum neurotoxin C (BoNT/C) to eliminate most of the glutamate release so that an expectedly smaller aspartate-like component of the compound EPSC could be detected by whole cell patch clamp recording. In control cultures, NMDA receptor activation accounted for only 18% of the evoked EPSC and an NR2B-selective antagonist reduced the NMDA receptor-mediated component by only 20%. Block of P/Q-type Ca(2+) channels essentially eliminated the response and 0.1 muM KB-R7943 had no significant effect. In BoNT/C-pretreated cultures, however, NMDA receptor activation accounted for 77% of the evoked EPSC and an NR2B-selective antagonist reduced the NMDA receptor-mediated component by 57%. Block of P/Q-type Ca(2+) channels reduced the response by only 28%, but 0.1 muM KB-R7943 reduced it by 45%. These results suggest that part of the Schaffer collateral synaptic response has pharmacological properties similar to those of synaptosomal aspartate release and may therefore be mediated at least partly by released aspartate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。