BACKGROUND: Tumor cell senescence reduces sensitivity to anticancer drugs, making senescent cell elimination an ideal strategy to enhance chemotherapy sensitivity. The interaction between the PI3K/Akt and Hippo/YAP1 pathways is increasingly studied, but the role of PIK3CB, YAP1, and their impact on senescence and chemotherapy sensitivity in head and neck tumors is unclear. METHODS: Public datasets (GEO, TCGA, HPA) were analyzed for PIK3CB expression and clinical associations. Immunohistochemistry, cell proliferation assays, DNA replication, colony formation, aging markers, and DNA damage assessments were conducted. Bulk and single-cell transcriptomics and proteomics data were analyzed. Cell passage effects on aging and the impact of PIK3CB modulation on YAP1 were evaluated. Potential drugs targeting PIK3CB were identified, and the effects of senescent cell clearance drugs on clonogenic abilities and chemotherapy sensitivity were assessed. RESULTS: Elevated PIK3CB expression in HNSCC tumors correlated with advanced stages, older age, and decreased survival. PIK3CB and YAP1 expressions were strongly correlated, impacting aging pathways and cellular proliferation. Modulation of PIK3CB affected tumor cell proliferation, aging, and DNA damage. The combined application of navitoclax and paclitaxel can reduce tumor cell proliferation and autonomous migration ability, influenced by the levels of PIK3CB. CONCLUSION: High PIK3CB expression in head and neck cancers is linked to poor prognosis and advanced tumor grades. PIK3CB promotes cell proliferation and reduces aging via the YAP1 pathway. The combination of navitoclax and paclitaxel reduces tumor cell proliferation and autonomous migration ability, providing a basis for further exploration of increasing chemotherapy sensitivity.
Targeting PIK3CB/YAP1 improves the sensitivity of paclitaxel by suppressing aging in head and neck squamous tumor cells.
靶向 PIK3CB/YAP1 可抑制头颈部鳞状细胞肿瘤细胞的衰老,从而提高紫杉醇的敏感性
阅读:10
作者:Liu Junzhi, Li Huimin, Sun Ruotong, Ying Guoguang, Liang Zheng
| 期刊: | Cancer Cell International | 影响因子: | 6.000 |
| 时间: | 2025 | 起止号: | 2025 May 24; 25(1):190 |
| doi: | 10.1186/s12935-025-03818-7 | 研究方向: | 细胞生物学、肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
