Sodium alginate microspheres loaded with Quercetin/Mg nanoparticles as novel drug delivery systems for osteoarthritis therapy.

负载槲皮素/Mg纳米粒子的海藻酸钠微球作为治疗骨关节炎的新型药物递送系统

阅读:4
作者:Chen Jun, Wu Guoya, Wu Jian, Jiao Zhijian
BACKGROUND: Osteoarthritis (OA) is the most prevalent arthritic disease characterized by cartilage degradation and low-grade inflammation, for which there remains a lack of efficacious therapeutic interventions. Notably, mitigating the impact of oxidative stress (OS) and inflammatory factors could help alleviate or hinder the advancement of OA. Given the benefits of both quercetin (Que) and Magnesium ion (Mg(2+)) in OA treatment, coupled with the structural properties of Que, we have innovatively developed the Que-Mg(2+) nanoparticles (NPs), aiming to deliver both Que and Mg(2+) simultaneously and achieve enhanced therapeutic outcomes for OA. Moreover, to avoid the adverse reactions linked to frequent injections, sodium alginate (SA) microspheres encapsulating Que-Mg(2+) NPs (Que-Mg@SA) were designed to treat the H(2)O(2)-induced OA cell model. METHODS: Que-Mg@SA microspheres were synthesized using the ionotropic gelation technique, with calcium chloride acting as the cross-linking agent. Comprehensive characterization of the Que-Mg@SA was conducted through transmission electron microscope (TEM), dynamic light scattering (DLS), optical microscope, and scanning electron microscope (SEM), which provided detailed insights into their size, zeta potential, morphology, and micromorphology. Additionally, the microsphere swelling rate and Que release were evaluated. The biocompatibility of Que-Mg@SA microspheres, along with their impact on chondrocyte viability, were detected through CCK-8 assay and live/dead cell staining. Furthermore, the antioxidant and anti-inflammatory properties of Que-Mg@SA were evaluated by examining the ROS scavenging ability and pro-inflammatory factors levels, respectively. Finally, the regulatory influence of Que-Mg@SA microspheres on extracellular matrix (ECM) metabolism in OA was assessed by immunofluorescence staining and Western blot. RESULTS: Characterization results revealed that Que-Mg NPs exhibit nanoscale diameter, exceptional stability, and good dispersibility, while Que-Mg@SA possesses high entrapment efficiency (EE%) and loading efficiency (LE%), pronounced hygroscopic properties, and sustained drug-release capabilities. Additionally, in vitro cellular assays revealed that the biocompatible Que-Mg@SA microspheres significantly restored chondrocyte viability, scavenged H(2)O(2)-induced excessive ROS, reduced the levels of inflammatory cytokines, upregulated cartilage anabolic gene expression, downregulated cartilage catabolic protease gene expression, and maintained the metabolic balance of cartilage tissue. CONCLUSION: The functionalized Que-Mg@SA microspheres developed in our study hold great promise as a drug delivery system for OA and potentially other biomedical applications. CLINICAL TRIAL NUMBER: Not applicable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。