[Biocompatibility evaluation of electrospun PLCL/fibrinogen nanofibers in anterior cruciate ligament reconstruction].

[电纺PLCL/纤维蛋白原纳米纤维在前交叉韧带重建中的生物相容性评价]

阅读:12
作者:Guo Jiahua, Zhang Yu, Chen Liyuan, Xu Liming, Mo Xiumei, Chen Liang
The study aimed to evaluate the safety and function of poly(lactic-acid-co-ε-caprolactone) (PLCL)/fibrinogen nanofibers (P/F-Ns), and provide theoretical basis for the clinical application. The surface morphology, mechanical properties, the hydrophilicity and the fibrinogen content of P/F-Ns were tested by scanning electron microscope, the material testing machine, the contact angle meter and the microplate reader, respectively. The cell adhesion, proliferation and ligament remodeling genes expression of Hig-82 cells on P/F-Ns were conducted through cell counting kit-8 (CCK-8) and real-time quantitative PCR analyses, respectively. The results showed that with the increase of the fibrinogen content, the pore sizes and hydrophilicity of three P/F-Ns increased, but the mechanical properties decreased. Cell adhesion and proliferation tests showed that P/F-N-2 held the best ability to promote cell adhesion and proliferation. The ligament remodeling genes expressions of Hig-82 cells on P/F-N-1, P/F-N-2 and P/F-N-3 were all up-regulated compared to P/F-N-0 on days 3 and 7. All the three P/F-Ns containing fibrinogen (P/F-N-1, P/F-N-2 and P/F-N-3) had better biocompatibility compared to P/F-N-0, and could be efficiently applied to the reconstruction of anterior cruciate ligament.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。