Kurarinone alleviates hemin-induced neuroinflammation and microglia-mediated neurotoxicity by shifting microglial M1/M2 polarization via regulating the IGF1/PI3K/Akt signaling.

Kurarinone 通过调节 IGF1/PI3K/Akt 信号通路,改变小胶质细胞 M1/M2 极化,从而减轻血红素诱导的神经炎症和小胶质细胞介导的神经毒性

阅读:7
作者:Jia Zeng-Qiang, Zuo Cheng, Yue Wen-Feng
Cerebral hemorrhage is a fatal disease that causes severe damage to local nerve function. The purpose of this research is to analyze the effect of kurarinone on hemin-induced neuroinflammation and neurotoxicity. In our study, according to the results of bioinformatics analysis, we hypothesized that kurarinone might modulate cerebral hemorrhage advancement via the insulin-like growth factor 1/phosphoinositide 3-kinase/protein kinase B (IGF1/PI3K/Akt) signaling. Kurarinone promoted M2 microglia polarization, and curbed M1 polarization and inflammation in human microglial cells (HMC3) cells with hemin treatment. Besides, kurarinone upregulated IGF1 expression and activated the PI3K/Akt signaling pathway in hemin-treated HMC3 cells. In addition, downregulation of IGF1 or inhibition of the PI3K/Akt signaling weakened the effects of kurarinone on microglia polarization and inflammation in HMC3 cells with hemin treatment. Kurarinone alleviated apoptosis and oxidative damage of SH-SY5Y cells co-cultured with hemin-treated HMC3 cells. In conclusion, kurarinone lessened hemin-induced neuroinflammation and microglia-mediated neurotoxicity by regulating microglial polarization through modulating the IGF1/PI3K/Akt signaling. These results delivered a new prospective therapeutic drug for the treatment of cerebral hemorrhage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。