TMC1 and TMC2 are cholesterol-dependent scramblases that regulate membrane homeostasis in auditory hair cells.

TMC1 和 TMC2 是胆固醇依赖性扰乱酶,可调节听觉毛细胞的膜稳态

阅读:5
作者:Lee Hubert, Park Yein Christina, Wen Haosheng, Smith Harper E, Balaraman Jayashree, Cui Runjia, Sotomayor Marcos, Ballesteros Angela
TMC1 and TMC2, the pore-forming subunits of the mechanoelectrical transduction (MET) complex in inner ear sensory hair cells, are essential for auditory and vestibular function. Pathogenic mutations in TMC1 are a leading cause of genetic hearing loss, but their underlying cellular mechanisms remain poorly understood. Here, we reveal that TMC1 and TMC2 are cholesterol-regulated lipid scramblases whose activity modulates plasma membrane asymmetry. Using reconstituted proteoliposomes and molecular dynamics simulations, we demonstrate that both proteins facilitate phospholipid translocation across membrane bilayers, a process tuned by cholesterol and enhanced by deafness-causing TMC1 mutations. We show that this scramblase activity correlates with TMC1-dependent externalization of phosphatidylserine and membrane blebbing in murine auditory hair cells, linking TMC1-dependent membrane homeostasis dysregulation to auditory sensory cell pathology. These findings identify TMCs as a novel family of lipid scramblases, advancing our understanding of MET complex biology and offering mechanistic insight into membrane-driven forms of hereditary deafness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。