Thermal proteome profiling and proteome analysis using high-definition mass spectrometry demonstrate modulation of cholesterol biosynthesis by next-generation galeterone analog VNPP433-3β in castration-resistant prostate cancer.

利用高分辨率质谱进行热蛋白质组分析和蛋白质组分析,证明下一代加列酮类似物 VNPP433-3β 可以调节去势抵抗性前列腺癌中的胆固醇生物合成

阅读:6
作者:Thankan Retheesh S, Thomas Elizabeth, Weldemariam Mehari M, Purushottamachar Puranik, Huang Weiliang, Kane Maureen A, Zhang Yuji, Ambulos Nicholas, Wang Bi-Dar, Weber David, Njar Vincent C O
Cholesterol (CHOL) homeostasis is significantly modulated in prostate cancer (PCa) suggesting an active role in PCa development and progression. Several studies indicate a strong correlation between elevated CHOL levels and increased PCa risk and severity. Inhibition of CHOL biosynthesis at different steps, including lanosterol synthase (LSS), has shown significant efficacy against both hormone-dependent and castration-resistant PCa. Earlier, we reported proteasomal degradation of androgen receptor (AR)/AR-Vs and Mnk1/2 as the primary mechanisms of action of VNPP433-3β in inhibiting PCa cell proliferation and tumor growth. Through thermal proteome profiling, comparative proteomics and cellular thermal shift assay, we identified VNPP433-3β's ancillary effect of lowering CHOL by binding to LSS and lanosterol 14-alpha demethylase, potentially inhibiting CHOL biosynthesis in PCa cells and tumors. Additionally, in conjunction with our previously reported transcriptome analysis, proteomics reveals that VNPP433-3β modulated upstream regulators and pathways critical for PCa stem cell maintenance and recurrence. The inhibition of CHOL biosynthesis by VNPP433-3β reinforces its multifaceted effects in PCa across all stages, highlighting its potential as a single-agent therapy. Achieving reduced CHOL levels aligns with better treatment outcomes, further substantiating VNPP433-3β's therapeutic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。