Phosphatase-independent activity of smooth-muscle calcineurin orchestrates a gene expression program leading to hypertension.

平滑肌钙调磷酸酶的非磷酸酶依赖性活性调控基因表达程序,从而导致高血压

阅读:4
作者:Yunes-Leites Paula Sofía, Sun Yilin, Martínez-Martínez Sara, Alfayate Álvaro, Toral Marta, Méndez-Olivares María José, Colmenar Ángel, Torralbo Ana Isabel, López-Maderuelo Dolores, Mateos-García Sergio, Cornfield David N, Vázquez Jesús, Redondo Juan Miguel, Campanero Miguel R
Angiotensin-II (Ang-II) drives pathological vascular wall remodeling in hypertension and abdominal aortic aneurysm (AAA) through mechanisms that are not completely understood. Previous studies showed that the phosphatase activity of calcineurin (Cn) mediates Ang-II-induced AAA, but the cell type involved in the action of Cn in AAA formation remained unknown. Here, by employing newly created smooth muscle cell (SMC)-specific and endothelial cell (EC)-specific Cn-deficient mice (SM-Cn-/- and EC-Cn-/- mice), we show that Cn expressed in SMCs, but not ECs, was required for Ang-II-induced AAA. Unexpectedly, SMC Cn also played a structural role in the early onset and maintenance of Ang-II-induced hypertension, independently of its known phosphatase activity. Among the signaling pathways activated by Ang-II, Cn signaling is essential in SMCs, as nearly 90% of the genes regulated by Ang-II in the aorta required Cn expression in SMCs. Cn orchestrated, independently of its enzymatic activity, the induction by Ang-II of a transcriptional program closely related to SMC contractility and hypertension. Cn deletion in SMCs, but not its pharmacological inhibition, impaired the regulation of arterial contractility. Among the genes whose regulation by Ang-II required Cn expression but not its phosphatase activity, we discovered that Serpine1 was critical for Ang-II-induced hypertension. Indeed, pharmacological inhibition of PAI-1, the protein encoded by Serpine1, impaired SMCs contractility and readily regressed hypertension. Mechanistically, Serpine1 induction was mediated by Smad2 activation via the structural role of Cn. These findings uncover an unexpected role for Cn in vascular pathophysiology and highlight PAI-1 as a potential therapeutic target for hypertension.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。