The role of pH on structure, corrosion behavior and biocompatibility of MgFe layered double hydroxide coating on Mg-Nd-Zn-Zr alloy.

pH值对MgFe层状双氢氧化物涂层在Mg-Nd-Zn-Zr合金上的结构、腐蚀行为和生物相容性的影响

阅读:8
作者:Yue Rui, Zhu Ruotong, Wang Suqin, Li Lingyu, Zuo Yusheng, Chen Jianzhao, Sheng Shaoding
In the present study, MgFe layered double hydroxide (LDHs) coatings were prepared on the surface of Mg-Nd-Zn-Zr (JDBM) alloy by a chemical conversion method, and the effects of the pH value (pH = 8, 10 and 12) of the prepared solution on the morphology, corrosion resistance and biocompatibility of the coatings were studied. The thickness of the Mg-Fe LDHs coatings was 43.79 ± 3.65 μm (pH = 8), 46.18 ± 1.05 μm (pH = 10) and 28.71 ± 4.05 μm (pH = 12), respectively. The corrosion rate of the JDBM matrix in simulated body fluid was 3.1 ± 0.1 mm/year, the LDHs coating significantly slowed down the corrosion process. When the pH of the mixed solution was 10, the Mg-Fe LDHs coatings exhibited the lowest corrosion rate (0.07 ± 0.008 mm/year). The cell experiment results indicate the Mg-Fe LDHs coating significantly enhances the cell viability of both EA.hy926 cells and A7r5 cells. At a 50% extract concentration, the cell viability for the JDBM alloy was 70% (EA.hy926) and 61% (A7r5), respectively, while the cell viability for the Mg-Fe LDHs coatings exceeded 95% for both EA.hy926 cells and A7r5 cells. In addition, the hemolysis ratio of the coated sample is about 1.7%, much lower than that of the JDBM alloy (46.7%), meeting the clinical requirements for medical materials with a hemolysis ratio below 5%. Based on the above results, the corrosion resistance and in vitro biocompatibilities of the JDBM alloy are significantly improved by the Mg-Fe LDHs coatings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。