Sex-biased gene expression precedes sexual dimorphism in the agonadal annelid Platynereis dumerilii.

在无腺环节动物 Platynereis dumerilii 中,性别偏向基因表达先于性二态性

阅读:5
作者:Ribeiro Rannyele P, Null Ryan W, Özpolat B Duygu
Gametogenesis is the process by which germ cells differentiate into mature sperm and oocytes - cells that are essential for sexual reproduction. The sex-specific molecular programs that drive spermatogenesis and oogenesis can also serve as sex identification markers. Platynereis dumerilii is a research organism that has been studied in many areas of developmental biology. However, investigations often disregard sex, as P. dumerilii juveniles lack sexual dimorphism. The molecular mechanisms of gametogenesis in the segmented worm P. dumerilii are also largely unknown. In this study, we used RNA sequencing to investigate the transcriptomic profiles of gametogenesis in P. dumerilii juveniles. Our analysis revealed that sex-biased gene expression becomes increasingly pronounced during the advanced developmental stages, as worms approach maturation. We identified conserved genes associated with spermatogenesis, such as dmrt1, and with oogenesis, such as the previously unidentified gene psmt. Additionally, putative long non-coding RNAs were upregulated in both male and female gametogenic programs. This study provides a foundational resource for germ cell research in P. dumerilii and markers for sex identification, and offers comparative data to enhance our understanding of the evolution of gametogenesis mechanisms across species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。