Physical spatiotemporal characteristics of cellular cortex dominate cell functions and even determine cell fate. The cellular cortex is able to reorganize to a dynamic steady status with changed stiffnesses once stimulated, and thus alter the physiological and pathological activities of almost all types of cells. TGF-β2, a potent pleiotropic growth factor, plays important roles in cartilage development, endochondral ossification, and cartilage diseases. However, it is not yet known whether TGF-β2 would alter the physical spatiotemporal characteristics of the cell cortex such as cortex stiffness, thereby affecting the function of chondrocytes. In this study, we investigated the influence of TGF-β2 on cellular cortex stiffness of chondrocytes and the underlying mechanism. We firstly detected TGF-β2-induced changes in cytoskeleton and focal adhesion plaque, which were closely related to cellular cortex stiffness. We then characterized the landscape of nanoscale cortex stiffness in individual chondrocytes induced by TGF-β2 via atomic force microscopy. By using inhibitors, latrunculin A and blebbistatin, we verified the importance of cytoskeleton-focal adhesion plaque axis on cellular cortex stiffness of chondrocytes induced by TGF-β2. We finally elucidated that TGF-β2 enhanced the phosphorylation of Smad3 and facilitated the nuclear accumulation of p-Smad3. The p-Smad3 aggregated in the nuclei enhanced the cytoskeleton and focal adhesion plaque at transcriptional level, thereby mediating changes in cell cortex stiffness. Taken together, these results provide an understanding about the role of TGF-β2 on physical spatiotemporal properties of cell cortex in chondrocytes, and might provide cues for interpretation of cartilage development and interventions to cartilage diseases.
TGF-β2 enhances nanoscale cortex stiffness via condensation of cytoskeleton-focal adhesion plaque.
TGF-β2 通过细胞骨架-粘着斑的凝聚增强纳米级皮质刚度
阅读:6
作者:Duan Mengmeng, Liu Yi, Pi Caixia, Zhao Yanfang, Tian Yunfei, Xie Jing
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2025 | 起止号: | 2025 Jan 21; 124(2):336-350 |
| doi: | 10.1016/j.bpj.2024.12.007 | 研究方向: | 细胞生物学 |
| 信号通路: | Adhesion/ECM | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
