Using scaffolds is a promising alternative to current methods of treatment for ruptures of tendons and ligaments. However, scaffolds are subject to a wide range of challenges, including mechanical, degradation, process-related and biological requirements. Poly-ε-caprolactone (PCL) fibers have already shown potential for tendon tissue engineering (TTE) because of their degradation kinetics and excellent mechanical properties. The objective of this study was to enhance the PCL scaffold for TTE, specifically in regard to the filament morphology and collagen coating. PCL fibers were melt-spun as monofilaments with circular and snowflake-shaped cross-sections. Different scaffold densities were achieved by applying three different braiding angles in the braiding process. Morphological characterization was conducted including porosity and pore size distribution using µ-CT. The scaffolds were collagenized and cellularized with primary tenocytes for 7 days. Immunofluorescence staining showed a certain alignment of cell growing direction with fiber direction. In cell viability and cell proliferation assays, significant improvements in cell response were observed for the snowflake fiber and collagen coating groups, especially when combined. The data suggest that the utilization of non-circular fibers may facilitate enhanced cell guidance and surface area, while the application of a collagen coating could optimize the cellular environment for adhesion and proliferation.
Effect of Collagen Coating and Fiber Profile on Tenocyte Growth on Braided Poly-ε-Caprolactone Scaffolds for Tendon and Ligament Regeneration.
胶原蛋白涂层和纤维分布对编织聚己内酯支架上腱细胞生长的影响及其在肌腱和韧带再生中的应用
阅读:5
作者:Emonts Caroline, Bauer Benedict, Büchter Charlotte, Pufe Thomas, Gries Thomas, Tohidnezhad Mersedeh
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 18; 26(4):1735 |
| doi: | 10.3390/ijms26041735 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
