3D bio-printed proteinaceous bioactive scaffold loaded with dual growth factor enhanced chondrogenesis and in situ cartilage regeneration.

3D生物打印的蛋白质生物活性支架负载双生长因子,增强软骨形成和原位软骨再生

阅读:9
作者:Shanto Prayas Chakma, Park Seongsu, Fahad Md Abdullah Al, Park Myeongki, Lee Byong-Taek
Articular cartilage has a limited self-healing capacity, leading to joint degeneration and osteoarthritis over time. Therefore, bioactive scaffolds are gaining attention as a promising approach to regenerating and repairing damaged articular cartilage through tissue engineering. In this study, we reported on a novel 3D bio-printed proteinaceous bioactive scaffolds combined with natural porcine cancellous bone dECM, tempo-oxidized cellulose nanofiber (TOCN), and alginate carriers for TGF-β1, FGF-18, and ADSCs to repair cartilage defects. The characterization results demonstrate that the 3D scaffolds are physically stable and facilitate a controlled dual release of TGF-β1 and FGF-18. Moreover, the key biological proteins within the bioactive scaffold actively interact with the biological systems to create a favorable microenvironment for cartilage regeneration. Importantly, the in vitro, in vivo, and in silico simulation showed that the scaffolds promote stem cell recruitment, migration, proliferation, and ECM deposition, and synergistic effects of TGF-β1/FGF-18 with the bioactive scaffolds significantly regulate stem cell chondrogenesis by activating the PI3K/AKT and TGFβ1/Smad4 signaling pathways. After implantation, the proteinaceous bioactive scaffold led to the regeneration of mechanically robust, full-thickness cartilage tissue that closely resembles native cartilage. Thus, these findings may provide a promising approach for regulating stem cell chondrogenesis and treating in situ cartilage regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。