Three-dimensional matrix stiffness-based stem cell soil: Tri-phase biomechanical structure promoted human dental pulp stem cells to achieve pulpodentin regeneration.

基于三维基质刚度的干细胞土壤:三相生物力学结构促进人类牙髓干细胞实现牙髓牙本质再生

阅读:8
作者:Li Xiujuan, Xia Yijing, Wang Zhiying, Yin Ziruo, Weng Maotao, Tian Feng, Kang Jie, Li Yuanjiao, Ding Peixuan, Liu Xing, Zhao Bin, Wang Lu
The regeneration of the pulp-dentine complex is characterized by organizational diversity, with both dentine and pulp being essential for regenerating a complete tooth-like structure. Matrix stiffness plays a crucial role in guiding the multi-lineage differentiation of stem cells during the regeneration process. However, human dental pulp stem cell (HDPSCs) differentiation via three-dimensional (3D) matrix stiffness is still ambiguous. This study employed gelatin methacryloyl hydrogels of varying stiffness to investigate their effects on HDPSCs differentiation, and constructing a Tri-Phase Biomechanical Structure. The effects of 3D stiffness on HDPSCs proliferation, morphology, differentiation, and biomineralization were examined. The underlying mechanisms were analyzed by RNA sequencing (RNA-seq). At the same time, the comprehensive effects of 3D matrix stiffness-induced HDPSCs paracrine signals on periapical cells (endothelial cells, macrophages and fibroblasts) were evaluated. In vitro, high stiffness promoted dentin differentiation, medium stiffness supported vascular differentiation, and low stiffness enhanced vascularization of peri-apical cells through paracrine signals. In vivo, treated dentin matrixes implanted in nude mice further confirmed that this Tri-Phase Biomechanical Structure effectively promoted crownward dentin formation, pulp-like regeneration within root canals, and integration with periapical tissues. These findings highlight that understanding HDPSCs responses to 3D matrix stiffness is crucial for guiding targeted, efficient regeneration of a tooth-like pulpodentin complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。