Cytochalasins Suppress 3D Migration of ECM-Embedded Tumoroids at Non-Toxic Concentrations.

细胞松弛素在无毒浓度下抑制 ECM 包埋的肿瘤样体的 3D 迁移

阅读:3
作者:Beslmüller Klara, van Megen Lieke J A, Struik Timo, Batenburg Daisy, Neubert Elsa, Evers Tom M J, Mashaghi Alireza, Danen Erik H J
Migrastatic strategies are considered as candidate therapeutic approaches to suppress cancer invasion into local surrounding tissues and metastatic spread. The F-actin cytoskeleton is responsible for key properties regulating (cancer) cell migration. The cortical F-actin network controls cell stiffness, which, in turn, determines cell migration strategies and efficiency. Moreover, the dynamic remodeling of F-actin networks mediating filopodia, lamellipodia, and F-actin stress fibers is crucial for cell migration. Here, we have used a conditional knockout approach to delete cofilin, an F-actin-binding protein that controls severing. We find that the deletion of cofilin prevents the migration of cancer cells from tumoroids into the surrounding extracellular matrix without affecting their viability. This identifies cofilin as a candidate target to suppress metastatic spread. Pharmacological inhibitors interfering with F-actin dynamics have been developed but their effects are pleiotropic, including severe toxicity, and their impact on 3D tumor cell migration has not been tested or separated from this toxicity. Using concentration ranges of a panel of inhibitors, we select cytochalasins based on the suppression of 2D migration at non-toxic concentrations. We then show that these attenuate the escape of tumor cells from tumoroids and their migration into the surrounding extracellular matrix without toxicity in 3D cultures. This effect is accompanied by suppression of cell stiffness at such non-toxic concentrations, as measured by acoustic force spectroscopy. These findings identify cytochalasins B and D as candidate migrastatic drugs to suppress metastatic spread.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。