Microbead Encapsulation Strategy for Efficient Production of Extracellular Vesicles Derived From Human Mesenchymal Stem Cells.

微珠封装策略高效生产源自人类间充质干细胞的细胞外囊泡

阅读:7
作者:Tan Jiayi, Hu Yunxia, Zheng Lijuan, Zheng Zheng, Fu Mali, Peng Haiying, Ma Shaohua
Human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs) have shown great potential in tissue repair and regeneration. However, their scalable production and functional quality are still limited by current expansion technologies. In this study, we propose a production technology for hMSC-EVs based on three-dimensional (3D) microbead culture, which enhances the secretory behaviour of hMSC. Fixed number of MSCs were encapsulated in Matrigel at appropriate densities and printed into 3D microbeads by the custom automated microfluidic bead-jet printing technique. Compared with 2D culture group, EVs derived from 3D hMSC microbead had smaller size and increased yield by 20-fold, and the actin depolymerisation of the cell may be an important mechanism for enhancing EV secretion. Further analysis confirmed that the EVs derived from 3D hMSC microbead exhibited enhanced angiogenic and proliferative capabilities, which promoted the viability and tube-forming capacity of human umbilical vein endothelial cells (HUVEC). In conclusion, this automated microfluidic microbead encapsulation technology increased the yield and therapeutic effect of hMSC-EVs and provides a platform for scalable EV production of regenerative therapies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。