Microbead Encapsulation Strategy for Efficient Production of Extracellular Vesicles Derived From Human Mesenchymal Stem Cells.

微珠封装策略高效生产源自人类间充质干细胞的细胞外囊泡

阅读:15
作者:Tan Jiayi, Hu Yunxia, Zheng Lijuan, Zheng Zheng, Fu Mali, Peng Haiying, Ma Shaohua
Human mesenchymal stem cell-derived extracellular vesicles (hMSC-EVs) have shown great potential in tissue repair and regeneration. However, their scalable production and functional quality are still limited by current expansion technologies. In this study, we propose a production technology for hMSC-EVs based on three-dimensional (3D) microbead culture, which enhances the secretory behaviour of hMSC. Fixed number of MSCs were encapsulated in Matrigel at appropriate densities and printed into 3D microbeads by the custom automated microfluidic bead-jet printing technique. Compared with 2D culture group, EVs derived from 3D hMSC microbead had smaller size and increased yield by 20-fold, and the actin depolymerisation of the cell may be an important mechanism for enhancing EV secretion. Further analysis confirmed that the EVs derived from 3D hMSC microbead exhibited enhanced angiogenic and proliferative capabilities, which promoted the viability and tube-forming capacity of human umbilical vein endothelial cells (HUVEC). In conclusion, this automated microfluidic microbead encapsulation technology increased the yield and therapeutic effect of hMSC-EVs and provides a platform for scalable EV production of regenerative therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。