Body axis specification is a crucial event in animal embryogenesis and was an essential evolutionary innovation for founding the animal kingdom. This process involves two distinct components that coordinate to establish the spatial organisation of the embryo: initiation of cascades of regionalised gene expression and orientation of morphogenetic processes such as body elongation. Intense interest in the first component has revealed Wnt/β-catenin signalling as ancestrally responsible for initiating regional gene expression, but the evolutionary origin of oriented morphogenesis has received little attention. Here, by addressing the cell and morphological basis of body axis development in embryos of the cnidarian Clytia hemisphaerica, we have uncovered a simple and likely ancestral coordination mechanism between Wnt/β-catenin signalling and directed morphogenesis. We show that the ligand Wnt3, known to initiate oral gene expression via localised Wnt/β-catenin pathway activation, also has a key β-catenin-independent role in globally orienting planar cell polarity (PCP) to direct morphogenesis along the oral-aboral axis. This PCP orientation occurs in two distinct steps: local orientation by Wnt3 and global propagation by conserved core PCP protein interactions along the body axis. From these findings, we propose novel scenarios for PCP-driven symmetry-breaking underlying the emergence of the animal body plan.
Planar cell polarity coordination in a cnidarian embryo provides clues to animal body axis evolution.
刺胞动物胚胎中的平面细胞极性协调为动物体轴进化提供了线索
阅读:7
作者:Uveira Julie, Donati Antoine, Léria Marvin, Lechable Marion, Lahaye François, Vesque Christine, Houliston Evelyn, Momose Tsuyoshi
| 期刊: | Elife | 影响因子: | 6.400 |
| 时间: | 2025 | 起止号: | 2025 Jul 2; 14:RP104508 |
| doi: | 10.7554/eLife.104508 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
