Poly(ADP-ribose) polymerase-1 inhibition in brain endothelium protects the blood-brain barrier under physiologic and neuroinflammatory conditions

脑内皮细胞中聚(ADP-核糖)聚合酶-1 的抑制可在生理和神经炎症条件下保护血脑屏障

阅读:6
作者:Slava Rom, Viviana Zuluaga-Ramirez, Holly Dykstra, Nancy L Reichenbach, Servio H Ramirez, Yuri Persidsky

Abstract

Blood-brain barrier (BBB) dysfunction seen in neuroinflammation contributes to mortality and morbidity in multiple sclerosis, encephalitis, traumatic brain injury, and stroke. Identification of molecular targets maintaining barrier function is of clinical relevance. We used a novel in vivo model of localized aseptic meningitis where tumor necrosis factor alpha (TNFα) was introduced intracerebrally and surveyed cerebral vascular changes and leukocyte-endothelium interactions by intravital videomicroscopy. Poly(ADP-ribose) polymerase-1 (PARP) inhibition significantly reduced leukocyte adhesion to and migration across brain endothelium in cortical microvessels. PARP inactivation diminished BBB permeability in an in vivo model of systemic inflammation. PARP suppression in primary human brain microvascular endothelial cells (BMVEC), an in vitro model of BBB, enhanced barrier integrity and augmented expression of tight junction proteins. PARP inhibition in BMVEC diminished human monocyte adhesion to TNFα-activated BMVEC (up to 65%) and migration (80-100%) across BBB models. PARP suppression decreased expression of adhesion molecules and decreased activity of GTPases (controlling BBB integrity and monocyte migration across the BBB). PARP inhibitors down-regulated expression of inflammatory genes and dampened secretion of pro-inflammatory factors increased by TNFα in BMVEC. These results point to PARP suppression as a novel approach to BBB protection in the setting of endothelial dysfunction caused by inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。