Characterization of three B-cell lymphoma cell lines from chemotherapy resistant patients with respect to in vitro sensitivity to 21 antitumor agents, ABC-transporter expression and cellular redox status.

对来自化疗耐药患者的三个 B 细胞淋巴瘤细胞系进行表征,包括其对 21 种抗肿瘤药物的体外敏感性、ABC 转运蛋白表达和细胞氧化还原状态

阅读:4
作者:Bracht Karin, Kiefer Thomas, Dölken Gottfried, Bednarski Patrick J
PURPOSE: The aim of this study was to characterize three new, recently established non-Hodgkin lymphoma cell lines (GUMBUS, DOGUM, and DOGKIT), isolated from patients developing high-clinical resistance to cytotoxic therapy, with respect to sensitivity toward 21 antitumor drugs from different classes of action, expression of three ABC transporters: P glycoprotein (Pgp) (MDR1 and ABCB1), multidrug resistance related proteins (MRP1) (ABCC1), and MRP2 (ABCC2), as well as a range of antioxidative enzymes and glutathione (GSH). The results were compared to analogous data from the well-known HL-60 and U-937 cells. METHODS: The MTT assay was used to measure cell growth inhibitory activity. Transporter expression was determined by using an electrophoresis/Western blot system. GSH and enzyme activities were measured by employing functional assays with photometric detection. Pre-incubation with hydrogen peroxide was chosen as a model for oxidative stress. RESULTS: Based on the 50% growth inhibitory values (GI(50) values) of 21 known antitumor agents, the cell lines were sensitive again to chemotherapeutics after being in culture for at least 15-18 weeks. DOGUM and DOGKIT were most sensitive toward antitumor drugs in in vitro cytotoxicity assays while DOGUM was the least sensitive. None of the cell lines expressed measurable levels of any of the three transporters investigated and showed only moderate variation in their antioxidative defense system. After pre-treatment with hydrogen peroxide, GSH peroxidase (GPx) activity increased and, in general, a decrease in the growth inhibitory activities of various platinum antitumor agents occurred. Furthermore, all three cell lines rapidly acquired resistance to doxorubicin, methotrexate, and cisplatin again in vitro after only 3-5 treatment cycles with the respective drug. CONCLUSIONS: The therapy-resistant lymphoma cell lines GUMBUS, DOGUM, and DOGKIT were sensitive to antitumor agents once again after they had been established in culture. However, their sensitivity to antitumor agents can be rapidly decreased in vitro by either introducing the cells to culture conditions favoring oxidative stress or by exposing the cells at regular intervals to an antitumor drug. The ability of these three cell lines to quickly adapt to toxic insults in their environment is probably the reason why clinical resistance occurred.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。