Recombinant proteins, in particular monoclonal antibodies and related molecules, have become dominant therapeutics. As they are produced in mammalian cells, they require the concerted function of hundreds of host cell proteins in the protein secretion pathway. However, the comprehensive set of host cell machinery involved remains unclear. Thus, it is often unknown why some recombinant proteins fail to express well. Here we present and deploy an approach called Fc-targeting Biotinylation by Antibody Recognition (FcBAR), which allows for the in situ detection of protein-protein interactions for any recombinant protein with Fc domain. Briefly, cells are permeabilized and incubated with an anti-Fc antibody, conjugated with horseradish peroxidase. All proteins interacting with Fc-bearing proteins are then biotinylated, pulled down and identified via mass spectrometry. We applied this method on a panel of rituximab-producing CHO-S clones with a range of productivity levels. Through analysis of FcBAR protein-protein interactions and RNA-Seq, we identified protein interactions positively correlated with rituximab secretion, and tested 7 of these targets. We found overexpression of AGPAT4, EPHX1, and NSDHL significantly increased rituximab production. Thus, FcBAR provides an unbiased approach to measure PPIs supporting recombinant antibody production in situ, and can guide efforts to boost production of biotherapeutics and biosimilars by addressing production bottlenecks.
Improving Recombinant Antibody Production Using FcBAR: An In Situ Approach to Detect and Amplify Protein-Protein Interactions.
利用 FcBAR 提高重组抗体产量:一种检测和放大蛋白质-蛋白质相互作用的原位方法
阅读:4
作者:Wu Mina Ying Min, Rocamora Frances, Samoudi Mojtaba, Robinson Caressa M, Kuo Chih-Chung, PristovÅ¡ek NuÅ¡a, Grav Lise Marie, Kildegaard Helene Faustrup, Lee Gyun Min, Campos Alexandre Rosa, Lewis Nathan E
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 17 |
| doi: | 10.1101/2025.06.12.659199 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
