TILRR Aggravates Sepsis-Induced Acute Lung Injury by Suppressing the PI3K/Akt Pathway

TILRR 通过抑制 PI3K/Akt 通路加重脓毒症引起的急性肺损伤

阅读:10
作者:Xiaoyu Wang, Feixue Lin, Lisha Guo

Abstract

Acute lung injury (ALI) is a life-threatening lung change, and 40% of ALI cases result from sepsis. However, the effective treatment for sepsis-induced ALI is limited. It is urgent to explore novel therapeutic targets for ALI caused by sepsis. Anti-inflammatory therapy is a potential effective treatment for sepsis-induced ALI. Toll-like/Interleukin-1 receptor regulator (TILRR) could trigger aberrant inflammatory responses. Nevertheless, the role of TILRR in sepsis-induced ALI remains unknown. Besides, the phosphatidylinositol 3'kinase/protein kinase B (PI3K/Akt) pathway exerts protective effect on sepsis-induced ALI. Thus, the primary aim of the current study was to investigate whether TILRR contributed to sepsis-induced ALI by the PI3K/Akt pathway. To construct the sepsis-induced ALI model, human pulmonary microvascular endothelial cells (HPMVECs) were treated with lipopolysaccharide (LPS). Besides, the mRNA levels and protein levels were determined by quantitative reverse transcription-PCR (qPCR) and Western blot (WB), respectively. Moreover, cell proliferation was identified by the Cell Counting Kit-8 (CCK-8) assay and Annexin V was utilized to detect apoptosis. Furthermore, levels of proinflammatory cytokines and oxidative stress were tested by the enzyme-linked immunosorbent assay (ELISA) while reactive oxygen species (ROS) was determined by the flow cytometer. Results indicated that TILRR was upregulated to suppress the proliferation and induce apoptosis of HPMVECs under LPS treatment. Besides, TILRR induced aberrant inflammatory responses and oxidative stress in HPMVECs under LPS treatment. Mechanistically, TILRR regulated proliferation, apoptosis, inflammatory responses, and oxidative stress in LPS-treated HPMVECs through inactivating the PI3K/Akt pathway. In summary, TILRR aggravated sepsis-induced ALI by suppressing the PI3K/Akt pathway. These results could provide novel therapy targets for sepsis-induced ALI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。