Development and Characterization of a Primary Ciliated Porcine Airway Model for the Evaluation of In Vitro Mucociliary Clearance and Mucosal Drug Delivery.

建立和表征原代纤毛猪气道模型,用于评价体外粘液纤毛清除和粘膜药物递送

阅读:7
作者:Martin Janik, Neubauer Veronika, Rittersberger Rebecca, Treitler Simon, Kopp Patrick, Günday Cemre, Shrimo Iman, Dabbars Annabelle, Rosenau Frank, Türeli Akif Emre, Günday-Türeli Nazende, Haedicke-Peters Oliver, Schindowski Katharina
Background/Objectives: In vitro models play a crucial role in preclinical respiratory research, enabling the testing and screening of mucosal formulations, dosage forms, and inhaled drugs. Mucociliary clearance (MCC) is an essential defense mechanism in mucosal drug delivery but is often impaired in respiratory diseases. Despite its importance, standardized in vitro MCC assays are rarely reported. Furthermore, many published methods primarily measure cilia beat frequency (CBF), which requires high-speed cameras that are not accessible to all laboratories. Therefore, this study aimed to develop a physiologically relevant, differentiated in vitro model of the respiratory epithelium that incorporates both beating cilia and functional MCC. We chose porcine airway mucosa as an alternative to human tissue due to ethical considerations and limited availability. The established model is designed to provide a reproducible and accessible method for a broad range of research laboratories. Methods: The previously published tracheal mucosal primary cell (TMPC DS) model, derived from porcine tissue, lacked the presence of beating cilia, which are crucial for effective MCC analysis. For accurate MCC assessment, beating cilia are essential as they play a key role in mucus clearance. To address this limitation, the here-described ciliated tracheal mucosal primary cell (cTMPC) model was developed. cTMPCs were isolated from porcine tissue and cultured under air-liquid interface (ALI) conditions for 21 days to promote differentiation. This model was evaluated for cell morphology, tight junction formation, ciliated and mucus-producing cells, barrier function, gene expression, and tracer/IgG transport. MCC and the model's suitability for standardized MCC assays were assessed using an inverted microscope. In contrast to the TMPC DS model, which lacked beating cilia and thus could not support MCC analysis, the cTMPC model allows for comprehensive MCC studies. Results: The developed differentiated in vitro model demonstrated key structural and functional features of the respiratory epithelium, including well-differentiated cell morphology, tight junction integrity, ciliated and mucus-producing cells, and effective barrier function. Functional MCC was observed, confirming the model's potential for standardized clearance assays. Conclusions: This differentiated in vitro model closely replicates the structural and functional characteristics of in vivo airways. It provides a valuable platform for studying mucociliary clearance, toxicology, drug uptake, and evaluating mucosal formulations and dosage forms in respiratory research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。